P(0)=-16t^2+290

Simple and best practice solution for P(0)=-16t^2+290 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(0)=-16t^2+290 equation:



(0)=-16P^2+290
We move all terms to the left:
(0)-(-16P^2+290)=0
We add all the numbers together, and all the variables
-(-16P^2+290)=0
We get rid of parentheses
16P^2-290=0
a = 16; b = 0; c = -290;
Δ = b2-4ac
Δ = 02-4·16·(-290)
Δ = 18560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18560}=\sqrt{64*290}=\sqrt{64}*\sqrt{290}=8\sqrt{290}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{290}}{2*16}=\frac{0-8\sqrt{290}}{32} =-\frac{8\sqrt{290}}{32} =-\frac{\sqrt{290}}{4} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{290}}{2*16}=\frac{0+8\sqrt{290}}{32} =\frac{8\sqrt{290}}{32} =\frac{\sqrt{290}}{4} $

See similar equations:

| 18+3y=72 | | -9x-5+6=19 | | −2w=−9w | | 37–y=23+y | | -2h−9=-3h | | (23x+3)=(6x+3) | | 6(d-84)=78 | | -6t=-4t+8 | | X+4+3x+4=90 | | 9+10u=7u | | 4(-1)-y=5 | | t/8+88=98 | | 1=v-(-11) | | 3(m=12)=66 | | 18=4w-6 | | 9b-6=84 | | h/4+8=14 | | 22=13-n | | m+37/10=7 | | 9=q-7/7 | | -12-x=24 | | 9(p+2)=99 | | 6+4t=22 | | (4x+20)=400 | | 5(2c-3)=3(3c5) | | v/4+8=10 | | a+(-1)=-21 | | 0.085x+0.04(20,000−x)=1,610 | | 2y-5=2+y | | 26-2s=9s | | 2(4x+3)-13=2(18x)-13 | | 10-37y=7 |

Equations solver categories